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Abstract—Driven by advancements in foundation models, se-
mantic scene graphs have emerged as as a prominent paradigm
for high-level 3D environmental abstraction in robot navigation.
However, existing approaches are fundamentally misaligned with
the needs of embodied tasks. As they rely on either offline
batch processing or implicit feature embeddings, the maps can
hardly support interpretable human-intent reasoning in complex
environments. To address these limitations, we present INHerit-
SG. We redefine the map as a structured, RAG-ready knowledge
base where natural-language descriptions are introduced as
explicit semantic anchors to better align with human intent. An
asynchronous dual-process architecture, together with a Floor-
Room-Area-Object hierachy, decouples geometric segmentation
from time-consuming semantic reasoning. An event-triggered
map update mechanism reorganizes the graph only when mean-
ingful semantic events occur. This strategy enables our graph to
maintain long-term consistency with relatively low computational
overhead. For retrieval, we deploy multi-role Large Language
Models (LLMs) to decompose queries into atomic constraints
and handle logical negations, and employ a hard-to-soft filtering
strategy to ensure robust reasoning. This explicit interpretability
improves the success rate and reliability of complex retrievals,
enabling the system to adapt to a broader spectrum of human
interaction tasks. We evaluate INHerit-SG on a newly constructed
dataset, HM3DSem-SQR, and in real-world environments. Ex-
periments demonstrate that our system achieves state-of-the-art
performance on complex queries, and reveal its scalability for
downstream navigation tasks.

I. INTRODUCTION

The focus of robotic mapping has been steadily evolving.
Traditionally, robots prioritized high-precision metric recon-
struction to ensure safe navigation [33l [10, 4]. However, the
rise of embodied Al is shifting this focus toward semantic
interaction. An agent operating in human environments must
understand vague, language-driven instructions rather than just
coordinate goals. In this context, strict metric localization is
not a necessity in many modern embodied tasks. Benchmarks
such as Object Goal Navigation (ObjectNav) and Vision
Language Navigation (VLN) [37, 41} 32]] consider an episode
successful if the agent stops within a 1-meter radius of
the target. This reflects a shift from geometric accuracy to
semantic understanding, which is sufficient for the robot to
find and interact with the object. A robot does not require a
perfect point cloud to locate and identify a cup. Instead, it
requires a semantically meaningful index to bridge the gap
between human language and physical space.

We argue that, to effectively serve embodied intelligence
tasks, the mapping system for robots need to satisfy several
essential requirements. Structured. The map should organize
the environment into a multi-level topology rather than a flat
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Fig. 1. INHerit-SG Overview. Our system build a hierarchical semantic
memory during online exploration and operate closed-loop retrieval. (Left)
The hierarchical scene graph of a real-world office building built through
incremental mapping. (Right) The robot parses a complex query into structural
constraints and follows the retrieval pipeline to complete the task sequentially.

collection of features, mirroring human spatial cognition to
support scalable reasoning. Semantically Rich. The map must
contain deep visual and semantic attributes. This is essential
for grounding abstract human concepts into concrete physical
entities. On-the-fly. The system should support incremental
maintenance during exploration. While strict real-time syn-
chronization is unnecessary, the map must capture meaning-
ful semantic changes during exploration without relying on
heavy offline post-processing. Interpretable. The retrieval
mechanism must go beyond opaque embedding matching.
It requires robust reasoning capabilities to accurately parse
complex language constraints and ensure verifiable results.
But existing methods struggle to satisfy all these re-
quirements simultaneously. Recent 3D semantic mapping has
evolved along two main axes, flat open-vocabulary feature
fields and structured hierarchical scene graphs. While flat
representations [12} [16] perform well in zero-shot recognition,
they encode maps as dense, point-aligned embeddings without
explicit multi-level structure. As a result, flat feature-field
representations are neither structurally expressive nor inter-
pretable, making it difficult to support scalable reasoning over
complex spatial and semantic constraints. Meanwhile, current
structured methods [[17, |44} 26] provide richer geometric and
topological details but often incur high computational costs
and storage redundancy. Some real-time systems, such as
Hydra [17], incorporate more explicit segmentation labels and
geometric descriptors for storage. However, such geometric
descriptors and categorical labels still lack semantic richness



and expressiveness required to ground abstract human intent.

In parallel, retrieval mechanisms in current embodied sys-
tems [45) 39] typically operate in an open-loop manner, relying
primarily on embedding similarity for recall. This strategy
is fragile to complex logical structures such as negation or
chained spatial relations and frequently produces false posi-
tives without explicit verification. Although recent navigation-
focused methods [47, 36} 8| 51} /49, 46] have begun to integrate
confidence calibration, graph prompting, or active exploration,
most still lack a systematic closed-loop verification mechanism
to audit candidates against full semantic intent. As a result,
current semantic mapping pipelines remain poorly aligned
with the logical reasoning demands of embodied interaction,
particularly in terms of interpretability.

To achieve these requirements, we propose INHerit-SG,
a lightweight scene graph system designed for long-term
embodied execution. We argue that visual features alone are
insufficient for representing semantics. Natural language, by
contrast, is explicit, compositional, and aligned with human
understanding. Therefore, beyond image features, we store
natural-language descriptions in the map as Semantically
Rich representation grounded in human concepts. We rede-
fine the map as a Structured, RAG-ready knowledge base
organized into a multi-level Floor-Room—Area—Object hierar-
chy, where visual features provide perceptual grounding and
natural-language descriptions serve as explicit semantic an-
chors. For On-the-Fly efficiency, our system employs a event-
triggered mechanism that updates topology only upon mean-
ingful semantic changes Furthermore, we couple this mapping
engine with an Interpretable closed-loop retrieval pipeline.
This system moves beyond opaque embedding matching by
utilizing multi-role LLM parsing for logical constraint en-
forcement and VLM-based visual auditing, ensuring precise
adherence to complex user intents.

In summary, we make the following contributions:

1) We propose INHerit-SG, a hierarchical scene graph frame-
work that organizes the map as a RAG-style, language-
indexed knowledge base. By retaining visual features for
perceptual grounding while treating natural language as the
semantic anchor, the map becomes directly compatible with
human reasoning and complex queries.

2) We design an asynchronous dual-process architecture with
an event-triggered update mechanism. INHerit-SG decou-
ples geometric segmentation from semantic reasoning and
reorganizes the graph only when meaningful semantic
events occur, enabling scalable, incremental mapping.

3) We develop an interpretable closed-loop retrieval pipeline
that enforces logical constraints through LLM parsing and
VLM-based verification, significantly improving reliability
for complex queries beyond similarity-based retrieval.

4) We construct HM3DSem-SQR, a dataset to test high-
level reasoning and fine-grained retrieval, including logical
negations, spatial relationships, and complex attribute con-
straints. Source code and dataset will be released to benefit
the community.

II. RELATED WORK
A. Open-Vocabulary Semantic Mapping

The integration of Vision-Language Models (VLMs) has
fundamentally shifted semantic mapping from closed-set label
classification to open-vocabulary understanding. Early ap-
proaches in this domain leveraged foundation models to con-
struct dense, semantic feature fields. Methods such as Concept-
Graphs [12]], VLMaps [16]], OpenScene [31]], LERF [21]], and
OpenMask3D [42] project high-dimensional features directly
into 3D space. Recent advancements including Open3DIS
[29], FMGS [52], SplatSearch [28], OVIR-3D [235], and Om-
niMap [6] have further refined this paradigm through instance
segmentation and Gaussian Splatting integration. While these
flat representations excel at zero-shot recognition, they typi-
cally organize the map as dense collections of point-aligned or
voxel-wise embeddings. Although effective for simple queries,
they generally lack explicit hierarchical abstractions, which
can lead to poor scaling in large environments and poor
efficiency for complex spatial queries.

To enable deeper spatial reasoning, researchers have de-
veloped structured 3D scene graphs. Offline methods like
Open3DSG [22], HOV-SG [44], FSR-VLN [50], Scene-
GraphLoc [27], and OpenIN [43] construct rich hierarchies
enabling relationship modeling. However, these approaches
typically rely on heavy global optimization or batch process-
ing, limited in online applicability. Planning frameworks like
SayPlan [35] circumvent this by assuming pre-constructed
graphs. Conversely, real-time systems such as Hydra [17]], Clio
[26], Describe Anything [11], ZING-3D [38], and The Bare
Necessities [20] focus on incremental construction. Despite
their efficiency, several of these systems still largely rely on
high-dimensional embeddings or relatively simple categorical
tags, which can limit fine-grained interpretability and com-
positional reasoning. While most open-vocabulary methods
use latent embeddings as the primary semantic representation,
some real-time systems (e.g., Hydra) incorporate more explicit
geometric descriptors and segmentation labels. However, these
approaches are still limiting interpretability and are weak for
reliable language-grounded reasoning.

B. Incremental Updates and Global Consistency

For long-term autonomy, a map must be a living entity
capable of adapting to dynamic changes. Approaches such as
DualMap [19]] and Khronos [40] address this by maintaining
spatio-temporal consistency through hybrid abstract-concrete
layers or unified metric-semantic formulations. Similarly,
works like DynamicGSG [9], REACT [30], and MoMa-LLM
[15] focus on real-time attribute clustering and updating object
geometry to handle object dynamics. Additionally, methods
including GraphPad [1], EmbodiedRAG [3], and RoboEXP
[18] emphasize inference-time updates or exploration-driven
graph expansion. Despite these advances, many update policies
are still primarily triggered by geometric changes or fixed
time intervals. While some recent works begin to incorporate
object-level or semantic change detection, fully semantically-
aware topological event triggering remains an open challenge.
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Fig. 2. The INHerit-SG Framework. The system bridges real-time mapping with logic-aware retrieval. (Left) The pipeline employs a dual-stream architecture
to balance tracking and reasoning. A Event-Triggered Map module (top-left) optimizes topological updates based on VLM decisions, while the Incremental
Association block (bottom-left) fuses SAM3/DINOvV3 features to instantiate nodes. (Center) The resulting data structure is a multi-level scene graph that
explicitly models topological relationships. (Right) Complex queries are decomposed by Multi-role LLMs into specific constraints, including negation and
weights. The system ranks candidates using a scoring function and executes a final VLM Verification step to ensure precise intent grounding.

C. Semantic Retrieval and Verification

The utility of a semantic map is ultimately defined by
how accurately a robot can retrieve objects from it. In-
spired by Retrieval-Augmented Generation (RAG) in NLP
[24, 7, [14], embodied retrieval systems typically map natural
language queries directly to map embeddings. Methods such
as Embodied-RAG [43], GraphEQA [39], LLM-Grounder
[46], and RAG-3DSG [3] perform top-k recall based on
vector similarity. Specialized variants extend
this to affordance-aware and ontology-based memory. These
approaches frequently struggle with logical structures where
visually similar objects may be incorrectly prioritized. Recent
works have sought to mitigate these issues by integrating
retrieval with active exploration, confidence calibration, and
graph prompting. Explore until Confident [36] uses confor-
mal prediction for uncertainty-aware stopping. LLM-Grounder
[46] performs explicit relation evaluation. Approaches like SG-
Nav [47]], Explore until Confident [36]], RoboHop [8], and
MTU3D [51]] combine graph prompting with navigation. To
handle temporal context, Mem2Ego [49] and ReMEmbR [2]
align global memory with ego-centric cues. Despite these ad-
vances, existing systems generally lack an explicit closed-loop
verification mechanism to audit retrieved candidates against
the logical intent of the query, leaving them vulnerable to false
positives in cluttered or complex environments.

III. TECHNICAL APPROACH

We propose INHerit-SG, a unified framework for incremen-
tal hierarchical semantic scene graph construction and closed-

loop retrieval. Our approach is designed around two core
principles: (1) Geometric Stability for Semantic Anchoring,
ensuring that high-level semantics are grounded in a robust
geometric skeleton; and (2) Interpretable Verification, shifting
from black-box similarity matching to a transparent, logic-
driven retrieval pipeline.

As shown in Figure 2] our system processes a stream of
RGB-images and camera poses to maintain a dynamic graph
G = (V,&). The process begins with the Hierarchical Con-
struction Module (Sec. [lI-A). Here, a fast geometric stream
builds structural layers, including Floors (L) and Rooms
(L), while a semantic stream instantiates atomic Objects (L3).
Next, the Incremental Association Module (Sec. [lI-B) fuses
temporal observations while preventing redundancy during
tracking. The Map-Conditioned Update Module (Sec. [II-C)
generates intermediate Functional Areas (Lz). This module
refreshes the graph topology only when significant semantic
events occur. Finally, the Closed-Loop Retrieval Module (Sec.
[M-D) handles user interaction. It parses instructions into
structural constraints and performs a visual audit via a VLM
to output a verified 3D target location.

A. Hierarchical Scene Graph Construction

The semantic memory is built upon a robust geometric
foundation. We employ a hierarchical construction strategy
distributed across the dual-stream architecture to balance
mapping accuracy with computational efficiency. Importantly,
node representations are designed from the outset to align
with RAG-style knowledge organization, allowing the map to
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Fig. 3. Dual-Stream Construction Pipeline. We decouple mapping into a
Geometric Stream (top) for online room segmentation and an asynchronous
Semantic Stream (bottom) for fine-grained object reasoning. These threads
converge via an Event-Trigger mechanism, which incrementally construct the
hierarchical scene graph from the bottom up.

function directly as a structured, queryable knowledge base.

Geometric Stream: Dense Topology & Keyframe Gating
(Lo, L1). As illustrated in Fig. |Z|, the Geometric steam acts as
the backbone for structural stability. It continuously integrates
the dense RGB-D stream into a voxel-based occupancy map.
We perform room segmentation (L) directly on this accumu-
lated free space using a Euclidean Distance Transform (EDT)
and watershed algorithm. Simultaneously, Vertical motion is
monitored to instantiate Floor nodes (Lg), enabling automatic
structural separation across floors.

Besides, we implement a visual gating mechanism to reg-
ulate data flow to the semantic stream. We extract global
DINOvV3 features and calculate cosine similarity against the
last processed frame. When this similarity drops below a
threshold, the system pushes the frame to the Semantic Queue
with its floor ID. This queue serves as a buffer, holding
selected keyframes for asynchronous, fine-grained analysis
by the Semantic semantic stream. This ensures that semantic
reasoning operates only on informative keyframes while geo-
metric tracking remains lightweight and continuous (=~ 2Hz).

Semantic Stream: Object Instantiation (L3). The Seman-
tic thread operates asynchronously on the Semantic Queue to
instantiate fine-grained object nodes (Lg3). For each keyframe,
we use the Segment Anything Model (SAM3) to gener-
ate instance masks and back-project their centroids into 3D
coordinates. To mitigate the temporal latency inherent to
this heavy inference, we implement a floor-consistent asyn-
chronous query strategy. Rather than relying on the occupancy
state synchronous with the keyframe timestamp, the thread
queries the Geometric Stream for the latest accumulated Room
Segmentation Mask associated with the keyframe’s specific
Floor ID. Since the Geometric Stream continuously integrates
dense topological data, this retrieved mask offers superior
boundary completeness and segmentation accuracy compared
to the partial state available at the time of capture. This ensures
that objects from previous keyframes are registered within the
most comprehensive geometric layout available, guaranteeing
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Fig. 4. Incremental Node Association Logic. The association process
follows a two-stage cascade. Stage 1 filters high-confidence matches using
strict geometric and visual thresholds. Stage 2 resolves ambiguities based on
semantic specificity, enforcing label consistency for known categories while
relying on high visual similarity for generic, open-vocabulary objects.

robust room assignment regardless of the robot’s subsequent
navigation across different rooms or floors.

RAG-Oriented Lightweight Node Representation. A key
design choice in INHerit-SG is to treat the scene graph as
a lightweight, RAG-aligned knowledge base rather than a
geometry-heavy map. Departing from traditional embedding-
heavy metric maps, we explicitly decouple semantic stor-
age from geometric reconstruction to ensure interpretability
and scalability. We adopt a compact, reference-based storage
strategy where Object nodes (L3) host metadata, including
semantic tags, visual embeddings, and 3D centroids with a
reference pointer to their optimal observation keyframe. The
raw high-resolution imagery is managed in a separate global
hash table. This design establishes a memory-efficient many-
to-one mapping between objects and keyframes, as multiple
objects often share the same best-view perspective. During
verification, the system dynamically accesses the specific best-
view image via this index. Higher-level Area (Ls) and Room
(L1) nodes aggregate context via IDs and semantic summaries,
with Room nodes additionally preserving 2D segmentation
masks for topological grounding. The global structure is
serialized efficiently via directed graphs and structured tables.
Compared to volumetric or pointcloud maps, this design drasti-
cally reduces memory usage while making the graph directly
compatible with language-driven retrieval. We quantitatively
validate this significant advantage in Section [[V]

B. Incremental Geometric-Semantic Association

Merging new observations into stable graph nodes is critical
for preventing semantic drift and redundancy. Rather than
relying on offline global optimization, INHerit-SG resolves
data association incrementally, ensuring that nodes remain
stable while accommodating both known categories and open-
vocabulary objects.

Open-Vocabulary Association Logic. A naive spatial or
visual matching strategy easily leads to over-merging in open-
vocabulary settings. Therefore, we design a two-stage fusing
cascade as illustrated in Fig. [4] First, a strict geometric gate



associates observations that have high spatial overlap and high
visual similarity with existing nodes. Second, for ambigu-
ous cases, the system decides upon semantic specificity. For
objects with specific labels, we enforce strict label consis-
tency while relaxing spatial constraints. For open-vocabulary
objects outside predefined categories, we retain them and
associate instances using a high visual-similarity threshold.
This ensures that the system remains compatible with open-
set environments, preventing generalization pollution where
visually distinct but spatially adjacent unknown objects are
erroneously merged. Upon a successful merge, we execute a
Best-View Update. The system compares the bounding boxes
of the current observation and the existing node. We retain
the keyframe path where the object’s bounding box is closer
to the image center, ensuring that the node is always linked
with the most informative visual perspective.

Local Spatial Topology Construction. Following the up-
date of object nodes in the current frame, the system estab-
lishes spatial edges between L3 Room nodes to support rela-
tional reasoning. We first apply a distance-based clustering on
the horizontal plane to identify spatially adjacent groups within
the current view. Within each cluster, pairwise relationships are
inferred using a configurable hybrid submodule. The system
either adopts a Geometric Mode that calculates heuristics
based on 3D bounding box offsets and vertical proximity, or
uses a VLM Mode to analyze the annotated RGB image to
deduce complex semantic relations. These validated edges are
inserted into the global spatial graph, enabling the system to
effectively resolve spatial-relational queries.

C. Event-Triggered Map Updates

A key question in incremental semantic mapping is not how
to update the map, but when the map should be reorganized.
Rather than relying on time or motion as triggers, our system
treats semantic topology changes as the primary signal for
reorganization. As is illustrated in Fig[5] we propose a Event-
Triggered mechanism that mimics the marginalization process
in SLAM [10} 133, 4], triggering high-level summarization only
when the topological belief stabilizes.

We first employ a supervisor module that intelligently
monitors the robot’s exploration state to trigger updates. A
Hard Trigger is activated by discrete state changes, such as
floor switches. A Soft Trigger is designed using a novel VLM-
based decision-making process. We frame the VLM as a high-
level supervisor, providing it with a task-specific, dynamically
generated Bird’s-Eye View (BEV) map. As shown in Fig. [5}
the BEV visualizes key topological data: room segmentation
masks (colored overlays), the current trajectory (red line), and
historical update points (blue wedges). Crucially, the blue
wedges fade over time, providing a visual cue for temporal
staleness. The VLM analyzes this map to detect significant
events, such as entering a New Area or completing a loop
closure. The system triggers an update only if the VLM
confirms that the topological change warrants a global refresh.
This ensures we do not waste resources on redundant motion.

VLM Supervisor
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Fig. 5. Event-Triggered Update. Instead of fixed-frequency updates, our

system monitors topological events. (Left) A BEV map tracks historical
update points (Blue Wedges) and room transitions. (Right) When an update
is triggered, the system selects representative observations to summarize the
room’s semantics and re-assigns objects to correct early segmentation errors.

When an update is triggered, the system first performs
global room mask optimization and object re-assignment.
It then initiates a bottom-up hierarchical generation. To in-
stantiate Functional Areas (L), the system spatially clusters
object nodes within each room. An LLM then processes their
aggregated textual semantics to derive functional labels and
summaries. Next, to construct the Room layer (L), the system
selects a geometric Best-View frame. It identifies this frame
by maximizing the intersection between the camera’s field-of-
view and the room’s occupancy mask, while accounting for
structural occlusions. We combine this optimal image with
the generated L, summaries. Finally, a VLM synthesizes this
multimodal context to produce high-level room descriptions.
This event-driven approach allows the graph to evolve only
when its semantic structure meaningfully changes, maintaining
a consistent semantic forest structure without hindering the on-
the-fly tracking of atomic objects.

D. Interpretable Closed-Loop Retrieval with Verification

A core limitation of existing semantic maps lies in how
retrieval decisions are made. Vector databases often suffer
from the attribute binding problem of logical negations. We
fundamentally shift the retrieval paradigm from opaque recall-
based embedding matching to an Interpretable Closed-Loop
pipeline, adopting a physical implementation of the RAG
workflow, as visualized in Fig. [

We first deploy a chain of specialized logical steps to
decompose the complex human query. First, Constraint De-
composition breaks the raw instruction into atomic entity
constraints, isolating target objects, reference landmarks, and
spatial requirements. Next, Negation Extraction explicitly flags
negative constraints, allowing the system to invert polarity
during scoring. Finally, Intent Weighting interprets the user’s
semantic emphasis, assigning dynamic weights to attributes.
For example, if the user emphasizes the red one, the retrieval
module tends to prioritize color over location.

Instead of relying on a single similarity score, we formu-
late retrieval as constraint satisfaction process and employ a
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hierarchical filtering strategy to rank candidates. The Floor ID
serves as a binary Hard Filter (H fi00r € {0, 1}), immediately
pruning the search space to the relevant level. Subsequently, all
other parsed constraints function as Soft Filters. We calculate a
composite relevance score S(n) for each candidate node n by
aggregating individual constraint scores. This process strictly
adheres to the intent weights, formally defined as:

K
S(n) = Hyioor - »_ pi - w; - Sim(n, ¢;) )

i=1

where K is the number of constraints, w; is the intent weight
for the i-th constraint, and Sim(n,c¢;) denotes the semantic
similarity between the node and the constraint. Crucially,
p; € {1,—1} represents the polarity indicator. This allows the
system to positively score matching attributes and penalize
nodes that satisfy negative constraints, ensuring the ranking
aligns precisely with the user’s specific intent.

Since similarity in feature space does not guarantee se-
mantic correctness, an explicit verification step is required.
Top-ranked candidates undergo a final Visual Audit. Here, a
VLM validates the object against the specific query using the
stored best-view image crop, eliminating feature-space mis-
judgments. Upon validation, the system outputs the precise 3D
centroid. This allows seamless integration with downstream
navigation tasks. Beyond retrieval, we demonstrate the life-
long potential of using natural language as object descriptions
via a Temporal Memory Fusion cycle. Through a designed
prompting strategy, the system can fuse the current interac-
tion into the object’s description while discarding outdated
historical details and realize object-level temporal memory.

Furthermore, this retrieval architecture provides flexibil-
ity. The proposed strategies can be selectively composed to
balance verification precision against computational latency.
We provide a detailed quantitative analysis of these modules
and their specific contributions in Table [l This closes the
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Fig. 7. Distribution of Query Types. The dataset encompasses a diverse
range of complexities, spanning from basic spatial relations (A-C), descriptive
queries (E), to challenging negations (D) and fuzzy descriptions (F).

loop between language reasoning, visual evidence, and spatial
memory.

IV. EXPERIMENTAL EVALUATION

We design three types of experiments to comprehensively
compare INHerit-SG with baselines: (i) Accuracy. We quanti-
tatively compare INHerit-SG with recent open-vocabulary map
representations in terms of retrieval accuracy on HM3DSem-
SQR and real-world sequences (Sec. [[V_:E[) (i) Resource Us-
age. We analyze the memory usage of INHerit-SG compared
to previous dense point-cloud representations (Sec. [[V-C),
and (iii) Ablation covering. We justify our design choices
through a comprehensive ablation study covering hierarchy,
timing, and verification modules (Sec. [V-D). Further, we
design a multi-step navigation task in real-world environments
based on validate the downstream effectiveness of INHerit-SG

(Sec. [V=E).

A. Dataset and Baselines

Simulation Dataset. To evaluate whether semantic maps
can support complex logical queries, we construct a dataset
HM3DSem-SQR from HM3D-Sem [34]], that stresses com-
positional reasoning rather than simple object recall. Unlike
random sampling benchmarks, we employ human expert tele-
operation to generate realistic exploration trajectories with
synchronized sensor streams. Based on the trajectories, we
manually constructed 36 trajectories (one per scene) and 6084
indexed instructions tailored to the characteristics of human
commands and stress different requirements of a semantic
map. Basic spatial relations (A-C) evaluate the need for a
Structured multi-level topology. Negation queries (D) and
descriptive queries (E) test whether the map is Semantically
Rich enough to ground abstract concepts. descriptive queries
(E), Ambiguous instructions (F) examine whether the system
supports Interpretable reasoning beyond embedding similar-
ity (Figure [7).

Realworld Dataset. We manually collected data from three
real-world environments and designed 80 queries, evaluating
the success rate through manual assessment in real scenes. The
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Qualitative Visualization INHerit-SG Construction. We demonstrate the online generation of a hierarchical 3D scene graph on a multi-floor

ustration. (Center) The dynamic construction process. As the robot executes the

trajectory, the system identifies key Event Poses (blue cubes) to trigger topological updates, incrementally expanding room skeletons (colorful outlines) and
instantiating semantic nodes (spheres). (Top) Representative Latest Best View RGB observations. (Right) The final consolidated global 3D scene graph.

TABLE I
QUANTITATIVE COMPARISON ON CUSTOM DATASET (HM3DSEM-SQR) AND BENCHMARK (OPENLEX3D)

HM3DSem-SQR Accuracy (%) 1

Semantic Acc (%) T Real-World Exp.

Method - L
Within 1m Within 0.5m |
ABC D E F Avg  ABC D E F Avg Random Full Set | Simple Complex Avg
ConceptGraphs 22.84 1479 21.54 20.22 19.95 21.62 14.30 21.38 18.99 19.03 - - 27.3 444  35.0
ConceptGraphs(GPT) 13.48 13.38 9.05 13.38 12.98 - - - - - — - - - -
Embodied-RAG 24.80 19.33 25.33 21.29 22.58 18.28 15.09 1892 159 16.95 - - 18.2 444 20.0
Embodied-RAG(GPT) 30.13 26.56 23.68 2597 27.58 22.07 21.17 16.45 19.35 20.64 - - 27.3 11.1  30.0
HOV-SG 27.0 31.6 347 28.5 29.40 20.32 23.07 2533 22.01 21.94 - - - - -
DualMap 36.52 25.89 36.02 33.88 33.02 30.78 22.21 31.58 28.34 28.01 — — — - —
INHerit-SG (Ours) 37.7 323 411 36.6 363 30.1 256 309 29.6 289 70.6 73.6 | 54.5 66.7 60.0

camera trajectory was obtained from front-end SLAM system,
while depth information was computed from a Livox LiDAR,
providing the RGB-D stream and poses as input to our system.
More details can be found in supplementary materials.

Baselines. We compare INHerit-SG against four state-
of-the-art methods: ConceptGraphs (flat, point-cloud
based), Embodied-RAG [43]] (open-loop retrieval), HOV-
SG [44] (offline, hierarchical but offline), and DualMap [19]
(SLAM-centric). All map construction are performed on a
single RTX 4090 GPU with cloud-called GPT-4o.

B. Retrieval Accuracy

This experiment evaluates whether our representation and
retrieval design improves reliability under complex semantic
constraints. Since geometric precision is not the sole criterion
in embodied tasks, we adopt two metrics: (i) Geometric
Accuracy, measuring whether the retrieved object lies within
a distance threshold of the ground truth, and (ii) Semantic
Accuracy, assessing whether the object truly satisfies the in-
struction. To ensure fairness, the semantic metric is composed
of two parts, including expert scoring over the full indexed
query set, and a human study involving 120 participants who
evaluated randomly sampled instructions.

Results (I) show that even under geometric-only evaluation,
our method significantly outperforms all baselines at the 1.0m
threshold. It maintains clear advantages at 0.5m on challenging
queries such as negation and ambiguous semantics, and remain
competitive on relatively easy cases. Despite not storing dense
point clouds and operating under depth uncertainty, INHerit-
SG remains highly competitive, demonstrating the benefit of
its Structured. With human evaluation, semantic accuracy
further improves. This demonstrates that once localization
factors are excluded, the system intrinsically benefits from its
Semantically rich representation and Interpretable retrieval
aligned with human intent. On real-world data, INHerit-SG
also demonstrates a clear advantage, highlighting its strong
adaptability to noisy real environments. More details about
human study and qualitative retrieval cases can be found in
supplementary materials.

C. Resource Efficiency

A key design choice in INHerit-SG is replacing heavy point
clouds with lightweight references, and treating the map as a
knowledge base rather than a geometric container. Table [II]
details the average storage consumption of all the simulation
data.

We report two types of storage usage in Img. because



TABLE II
EFFICIENCY ANALYSIS BREAKDOWN

Method Per-Object Node Storage (Avg) ‘ Map Size
Feat. Img Txt PC Node ‘ (HM3D)
ConceptGraphs 4KB  21.33MB 4B 123.01KB ~21.46MB 18.47GB
HOV-SG 22.3KB - - 28.3KB  ~94.2KB 1.79GB
DualMap 4KB - - 204.23KB ~315.13KB 87.4MB
Ours 21.1KB 405.0KB/- 155.8B - ~28.17KB | 47.5MB/34.0MB
TABLE IIT
ABLATION STUDIES ON COMPONENT CONTRIBUTION
Variant SR Latency
Full Model (INHerit-SG) 74.0% 22.02 s
Structural Ablations:
1. w/o Functional Area Nodes (L2) 71.7% 22.02 s
Retrieval & Semantic Ablations:
2. w/o SAM3 (BBox only) 68.5% 20.36 s
3. w/o VLM Verification 65.4% 11.75 s

Note: Latency includes both tracking and mapping overhead.

our nodes store only lightweight reference pointers, while
images are kept in a separate buffer. This separation means
the reported map size does not depend directly on raw image
storage. With straightforward image compression, our system
offers substantial additional room for engineering optimization
without altering the map structure itself. From Table [, most
baselines rely heavily on dense point clouds, leading to bloated
node sizes. As a result, our total map size is only 47.5MB,
34MB without images, achieving a sharp reduction compared
to point-cloud-based methods.

D. Ablation Study

In order to shed light on the contributions of various key
components in our approach, we present a comprehensive
ablation study on a random sequence from HM3DSem-SQR in
Table [T We evaluate both the Geometric Retrieval Accuracy
and the average System Latency per query. Relying on cloud-
based calls to large models, the measured latency is relatively
high. With local deployment, it is reduced to approximately
half. A detailed analysis is provided in the supplement.

Impact of Hierarchy and Architecture. Removing the
Functional Area Nodes (Row 1) forces the system to search a
larger, less structured graph, dropping accuracy by 2.3% and
almost no increase in retrieval time. This again demonstrates
the importance of a Structured multi-level topology for
scalable reasoning.

Impact of Retrieval Components. Ablating SAM3 (Row 2)
and relying solely on bounding boxes significantly degrades
accuracy (68.5%), showing that language descriptions alone
are also insufficient, and must be grounded with precise visual
perception to maintain a semantically rich representation.

Finally, removing VLM Verification (Row 3) results in the
fastest system (11.75s) but a drop in accuracy (65.4%). This
indicates that storing visual references and performing verifica-
tion substantially improves reliability, while also highlighting

[
" then find the nearest
non-black trash can,

and finally find a microwave

Find the nearest green plant, 4| inarestarea.

Fig. 9. Real-World Navigation. The robot successtully parses Find the
nearest green plant, then find the nearest non-black trash can, and finally find
a microwave in a rest area. retrieves the target, and navigates to it, validating
metric accuracy.

that these components are not strictly required. The retrieval
pipeline can be flexibly configured to trade off accuracy
and latency, depending on task demands, demonstrating the
modular and adaptable nature of our framework.

E. Qualitative Results: Downstream Integration

Finally, we demonstrate how the structured memory enables
practical embodied behaviors. We use a Unitree Gol robot
connected to a cloud server to execute sequential tasks based
on INHerit-SG retrievals. Integrated with ROS MoveBase,
the system supports hierarchical planning on the Room layer
before metric execution. This extends capabilities seen in SG-
Nav [47]. Figure 0] demonstrates a successful “Find-and-Go”
corresponding to the query in Figure [T}

V. CONCLUSION

In this work, we presented INHerit-SG, a framework that
reframes semantic mapping as a structured, language-indexed
knowledge base. By formulating the hierarchical scene graph
as RAG-ready memory, we bridge geometric mapping with
language-driven reasoning, replacing opaque embeddings with
explicit, human-aligned descriptions that make spatial mem-
ory directly accessible for logical inference. We introduced
a Event-Triggered map update mechanism that reorganizes
topoligy only when meaningful semantic changes occur., en-
abling the graph to evolve incrementally as a long-term spatial
memory. We further addressed the fragility of embedding-
based retrieval by moving beyond similarity matching to a
closed-loop verification process with logical parsing and visual
auditing. Experiments confirm that INHerit-SG significantly
suppresses misjudgments and effectively handles negation and
chained relations where baseline methods fail.

Limitations and Future work. INHerit-SG currently as-
sumes a relatively stable topology. While the event-triggered
mechanism captures semantic transitions effectively, handling
highly dynamic layouts or frequent object rearrangements
remains challenging. Also, the retrieval pipeline relies on
LLM/VLM reasoning, adding computational cost. Future work
will seek more efficient yet interpretable alternatives and
extend the framework to accommodate structural changes, and
apply it to life-long scenarios and mobile manipulation tasks.
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